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Particle sedimentation in the vicinity of a fixed horizontal vortex with time-dependent intensity can be
chaotic, provided gravity is sufficient to displace the particle cloud while the vortex is off or weak. This
“stretch, sediment, and fold” mechanism is close to the so-called blinking vortex effect, which is responsible
for chaotic transport of perfect tracers, except that in the present case the vortex motion is replaced by
gravitational settling. In the present work this phenomenon is analyzed for heavy Stokes particles moving
under the sole effect of gravity and of a linear drag. The vortex is taken to be a fixed isolated point vortex, the
intensity of which varies under the effect of either boundary conditions or volume force. When the unsteadi-
ness of the vortex is weak and the free-fall velocity is of the order of the fluid velocity, and the particle
response time is small, the particle motion equation can be written asymptotically as a perturbed Hamiltonian
system, the phase portrait of which displays a homoclinic trajectory. A homoclinic bifurcation is therefore
likely to occur, and the contribution of particle inertia to the occurrence of this bifurcation is analyzed
asymptotically by using Melnikov’s method.

DOI: 10.1103/PhysRevE.78.066310 PACS number�s�: 47.10.Fg

I. INTRODUCTION

In contrast with the chaotic advection of perfect tracers,
which has been a topic of great interest in the last decades
�1–4�, little is known about the chaotic motion of inertial
particles in laminar flows. Chaotic advection is entirely con-
tained within an elementary equation of kinematics, that is

dX�

dt
= V� f„X� �t�,t… , �1�

where X� �t� is the position of a perfect tracer advected by the

velocity field V� f. This velocity field is not required to be
turbulent for Lagrangian chaos to take place: it can be lami-
nar and entirely specified. In particular, chaotic advection
provides efficient mixing properties, and this is one of the
reasons why this effect attracted the attention of the physics
community. Mixing is indeed a key phenomenon in nature,
and a challenge for engineers as soon as one has to mix large
amounts of very viscous fluids or small quantities of fluid in
tiny domains. Nevertheless, the problem “starts rather than
ends with the specification of the velocity field” �5�, so that
many analyses are still being performed to quantify the La-
grangian properties of various flows. Among the mechanisms
leading to chaotic advection, the blinking vortex is probably
the easiest to perform �6�. Two key ingredients are required
here: the differential rotation and the displacement of the
vortex. The former ingredient is responsible for stretching
and the latter is required for folding to take place. Many
chaotic flows are based on this property and are described in
several reviews �3,4�.

In the case where the particle is not a pure tracer, surpris-
ing chaotic trajectories can also occur, even when the inclu-
sion obeys a linear drag law. For example, aerosols can have
complex trajectories in elementary cellular or ABC flows

�7–12�. The complex trajectories reported in these works are
due to the nonuniformity of the flow, to the finite response
time of the inclusion, and to gravity if any.

The goal of the present work is to show that heavy par-
ticles with small response time but non-negligible terminal
velocities can have chaotic trajectories under the combined
effect of a time-periodic differential rotation �which creates
stretching of a particle cloud� and of gravity �which prepares
the particle cloud to undergo folding�. In particular, we will
consider flows where unsteadiness does not suffice to induce
Lagrangian chaos, like two-dimensional flows of the form

V� f�X� ,t� = V� f
0�X� ��1 + � sin �t� , �2�

with V� f
0�X� � corresponding to a horizontal vortex. Indeed, one

can check that the dynamical system �1� is not chaotic in this
case, and that fluid points go to and fro along the streamlines
of the vortex. Clearly, unsteadiness does not produce chaos
because the vortex does not move: not only should we switch
the vortex off sometimes, but also we should light it up
somewhere else to produce chaos according to the blinking
vortex mechanism. However, if gravity is sufficient to dis-
place the particle cloud while the vortex is off �or weak�, one
could expect chaos according to some kind of “gravity-
induced blinking vortex.” Note, however, that the key role of
gravity in this scenario could also be played by electrostatic
forces, or swimming �if particles are bacteria or plankton�, to
name but a few examples.

In the following we show that heavy Stokes particles can
undergo such a mechanism. The dynamics of inertial par-
ticles is much more complicated than the one of tracers,
since one has to solve for both the equations of the flow
induced by the inclusion and the motion equations of the
inclusion. Nevertheless, significant simplifications arise
when the flow induced by the inclusion is a quasisteady
creeping flow. In the case of tiny heavy particles �e.g., aero-
sols� carried by a fluid with infinite extent one often writes*jean-regis.angilella@ensem.inpl-nancy.fr
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Ẍ� p =
V� T

�p
+

1

�p
�V� f�X� p,t� − Ẋ� p� , �3�

where X� p�t� is the particle position, �p denotes its response

time, and V� T is the terminal velocity of the inclusion in the
very same fluid at rest. This is the simplest equation for
nonideal tracers, which requires the particle Stokes and Rey-
nolds numbers to be much smaller than unity, and Brownian
diffusion to be negligible. In the present paper we will as-
sume that Eq. �3� is nondimensionalized by the typical length

scale and velocity of V� f, respectively, and that

�p � 1 and VT = �V� T� = O�1� .

The former condition can be thought of as a consequence of
the fact that the viscous time scale over the particle radius is
much smaller than convective flow time scales. The latter
manifests non-negligible sedimentation effects. If in addition
we assume ��1, the particle motion equation contains two
independent small parameters, namely � and �p. Classical

asymptotic expansions �13� of the form Ẋ� p=V� T+V� f
0+�V� 1

+O��2� enable one to write the particle motion equation as a
three-dimensional nonautonomous dynamical system:

Ẋ� p = V� T + V� f
0�X� p� + ��V� f

1�X� p,t� − k�� V� f
0 · �V� f

0 + V� T�� + O��2� ,

�4�

where we have set �p=k�, with k held fixed as �→0. Be-

cause the flow is two-dimensional and div�V� T+V� f
0�=0, Eq.

�4� is a perturbed Hamiltonian system with one-and-a-half
degree-of-freedom. The phase portrait of the unperturbed
system ��=0� can display homoclinic or heteroclinic trajec-
tories, which are key ingredients of chaos for such a system.
Figure 1�b� shows such trajectories for particles moving in
the vicinity of a point vortex, the streamlines of which are
sketched in Fig. 1�a�. The homoclinic trajectory �dashed line�
links the saddle point where the fluid velocity V� f

0�X� p� bal-

ances the terminal velocity V� T. �Throughout this paper we

have chosen V� T=−VTe�y, VT�0.� Such particle trajectories
have often been observed in particle-laden flows. For ex-
ample, trajectories such as Fig. 1�b� have been investigated
by Davila and Hunt �14�.

The perturbations contained in the O��� terms of Eq. �4�
can have several tremendous effects on the particle dynam-
ics. In particular, a homoclinic bifurcation can occur, leading
to chaotic particle settling or trapping. The purpose of the

present paper is to investigate under which conditions such a
bifurcation could occur.

II. ASYMPTOTIC ANALYSIS IN THE VICINITY
OF THE SEPARATRIX

The basic vortical flow investigated in this paper is the
point vortex:

V� f
0�x�� = r��r�e�� with ��r� = �0�r/R0�−2. �5�

This velocity field is set nondimensional in the following by
using R0 as length units and 1 /�0 as time units. The stream-
function �0 of this nondimensional flow therefore reads

�0(X� p�t�)=− 1
2 log�X� p�2. To leading order O��0� the particle

dynamics reads

Ẋ� p = V� T + V� f
0�X� p� �6�

and the corresponding trajectories therefore correspond to
the isovalues of the Hamiltonian:

H�x,y� = �0�x,y� + xVT

and are sketched in Fig. 1�b�. In order to investigate separa-
trix splitting under the effect of the O��1� terms it is neces-
sary to solve analytically the leading-order motion �6� with

X� p�	
�=A �saddle point�. To our knowledge, even for the
simple flow considered here, this cannot be done. To be pre-
cise one cannot obtain a simple solution which would make
the Melnikov integral easy to calculate analytically. How-
ever, one can obtain semianalytical results by rescaling the
variables. Indeed, we set

X� p�t� =
1

VT
Y� ��� with � = tVT

2

and notice that the velocity field investigated here satisfies

V� f
0�X� p� = VTV� f

0�Y� � .

The particle dynamics therefore reads

dY�

d�
= V� f

0�Y� � − e�y + �� 1

VT
V� f

1� 1

VT
Y� ���,

�

VT
2�

− kVT
2�� YV� f

0�Y� � · �V� f
0�Y� � − e�y�	 . �7�

The leading order dynamical equation is now independent of

y

x

(a) (b)
Vf

f TV + V

0

0

g

eθ

A

y

x

FIG. 1. Sketch of the streamlines of a hori-
zontal vortex �a� and of particle trajectories �to
leading order �0� in the vicinity of this vortex �b�.
The homoclinic trajectory �dashed line� is at-
tached to the saddle point A where the fluid ve-
locity balances the terminal velocity.
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VT, and the corresponding phase portrait in the Y� plane is
similar to the one of Fig. 1�b�, with the saddle point located

at �1,0� �Fig. 2�a��. Let Y� 0��� be a solution of the leading-
order dynamics:

Y�̇ 0 = V� f
0�Y� � − e�y, Y� 0�	
� = �1,0� �8�

�the dot upon a Y� indicating a derivation with respect to ��
which satisfies, accordingly

Y�̈ 0 = �� YV� f
0 · �V� f

0�Y� � − e�y� .

When the O��� terms are taken into account, and because the
perturbation of the rescaled system is time-periodic �with
period TY =TVT

2�, one usually considers the Poincaré section

�or stroboscopic map� Y� ��0+nTY�, with n=1,2 , . . .. Because
the Poincaré section of the unperturbed system has a hyper-
bolic point at �1,0�, the Poincaré section of the perturbed
system will have a hyperbolic point of the same kind
�saddle� in the vicinity of �1,0�, provided � is small enough.
An unstable �stable� invariant manifold Wu �Ws� will there-
fore exist in the vicinity of the hyperbolic point. If these two
manifolds intersect transversally, they will have an infinity of
such intersection points. The nondissipative �area preserving�
character of the O��0� system will induce huge stretching,
and folding will inevitably follow. The phase portrait in the
vicinity of the vortex will take the form sketched in Fig. 2�b�
which drastically differs from the nonchaotic case. Particle
sedimentation will then be chaotic. Such intersection points
can be detected by making use of the classical Melnikov
method �see, for example, Guckenheimer and Holmes �15��
which consists in calculating the dot product d��0�=EF� ·N� ,

where N� is the normal to the homoclinic trajectory at Y� 0�0�

with �Y�̇ 0 ,N� ,e�z� right-handed, F �E� is the intersection be-
tween this normal and Wu �Ws�. If the two manifolds inter-
sect transversally then d��0� will have simple zeros as �0
varies. If d��0� remains strictly negative, then the relative
position of the two manifolds will look like the one sketched
in Fig. 2�c�: Wu lying outside and Ws inside. In this case the

particles located outside the cell will fall regularly without
being catched in the cell, whereas the particles initially lo-
cated inside the cell will spiral out and exit the cell. To order
O���, the Melnikov “distance” d��0� is proportional to the
Melnikov function �15�:

MY���0� = 

−





Y�̇ 0��� ∧ V� f
0
„Y� 0���…sin� �

VT
2 �� + �0��d�

− kVT
2


−





Y�̇ 0��� ∧ Y�̈ 0���d� ,

where �0 is the starting time of the Poincaré section of the

dynamical system. By writing Y� 0= ����� ,����� and expand-

ing the sine function, and noticing that �̇ is an odd function,
we are led to

MY���0� = cos
��0

VT
2 


−





�̇���sin
��

VT
2 d� − kVT

2 ,

where

 = 

−





��̇�̈ − �̇�̈�d�

is a purely numerical constant. As noticed above, both ����
and ���� are unknown, but they are purely numerical func-
tions which can be determined from a numerical solution of
Eq. �8�. Finally, the Melnikov function of the homoclinic

trajectory in the Y� plane reads

MY���0� = cos� �

VT
2 �0�F� �

VT
2� − kVT

2 , �9�

where F�s� is the sine transform of �̇ and is a purely numeri-
cal function depending only on the shape of the initial vor-

tex. Note that since �̇�̈− �̇�̈ is proportional to the curvature
of the homoclinic trajectory, the constant part −kVT

2 clearly
manifests the contribution of a centrifugal effect due to par-
ticle inertia, as already observed for the onset of chaos in
Stommel cells �16�.

Because F�0�=0, the steady case �=0 is straightforward:
MY���0�=−kVT

2�0. This means that the manifold Wu re-
mains outside the cell, whereas Ws remains in the inner side
�such as Fig. 2�c��: they will not intersect, and any particle
released outside the cell will go down without penetrating
into the cell. Also, as already mentioned, particles released
inside the cell will spiral out. We recover the fact that per-
manent suspension does not exist for such inertial particles in
our flow, as already noticed by Wang and Maxey �7� and
Rubin, Jones, and Maxey �12� for other flows.

In the unsteady case ��0, the Melnikov function has
simple zeros if the amplitude of the oscillating term is larger
than the constant term. The criterion for the appearance of
chaotic particle sedimentation is therefore

Ws

W
u

1

F

B

N

E

Y0

(a)

(c)

(b)

nTξ(τ + )
Y

nTη(τ + )
Y

0

0

FIG. 2. Sketch of the Poincaré section of the perturbed renor-
malized system. In case �b� the manifolds Ws and Wu intersect,
leading to chaotic particle trajectories. In case �c� the two manifolds
do not intersect: particles released inside the cell will spiral out, and
those released outside will go around the cell.
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F� �

VT
2� � kVT

2 . �10�

By making use of a numerical algorithm to solve Eq. �8� we
obtain �45.8, together with F�s� which is plotted in Fig. 3.
This function has a peak value maxs F�s��1.14, so that no
chaotic motion is expected to occur, under the present hy-
potheses, if �say�

kVT
2 � 1.15.

In this case the Melnikov function remains strictly negative
whatever the frequency of the perturbation: the particle mo-
tion is always regular. For kVT

2 �1.14 a homoclinic bifur-
cation can occur, provided � /VT

2 lies in an appropriate range
�“chaotic window”� such as the one shown in Fig. 3. The
particle motion is therefore highly affected by the oscilla-
tions of the vortex.

III. COMPARISON WITH NUMERICAL SOLUTIONS

Figure 4 shows the evolution of a particle cloud initially
released inside the cell obtained by solving numerically the
particle motion equation �3� with �=0.1. The terminal veloc-
ity of the particles is VT=0.42 and the frequency of the per-
turbation is �=4VT

2 �0.7. In addition k=0.1, so that kVT
2

�0.8: according to Fig. 3 chaos is likely to occur in the

vicinity of the separatrix. We indeed observe that the particle
cloud is folded and stretched. Figure 5 shows two typical
particle trajectories, initially released outside the cell for
kVT

2 �0.8. In the case �=5VT
2 the motion is chaotic and the

spatial length of the trajectory is larger than in the nonchaotic
case ��=11VT

2� because the particle is captured into the cell
and spins there for a while. This property does not imply that
the system is chaotic, but it is used in the following to detect
the occurrence of chaos in a more systematic way, as pro-
posed by Ziemniak and Jung �17�, and as done in a previous
paper �16�.

Indeed, to check the predictive power of formula �10�, we
have run a set of computations where 1000 particles are re-
leased slightly above the cell, with �=0.2 and �p=0.02. The
trajectory of each particle p is then calculated by introducing
a random phase shift ap in the flow perturbation �simply
replace �t by �t+ap in Eq. �2��. The calculation is stopped
when the particle reaches a fixed bottom, below the cell. We
then calculate the centered averaged path length:

���� =
L��� − L�
�

L�
�
,

where L��� is the average particle path. The quantity ���� is
plotted in Fig. 6 for four values of VT. In addition, we have
plotted the amplitude of the Melnikov function minus its
constant part, that is F�� /VT

2�−kVT
2, the positiveness of

which implies chaotic particle motion. It appears that when
F�� /VT

2�−kVT
2 �0 the average particle path length is close

to zero �i.e., all the particle paths have roughly the same
length�, as expected if the two manifolds do not intersect
�like in Fig. 2�c��. In contrast, a soon as F�� /VT

2�−kVT
2

�0 the average particle path length increases, and this mani-
fests the fact that some particles have penetrated into the cell,
as a consequence of the homoclinic bifurcation.

IV. DISCUSSION

The calculations presented in this paper show that a fixed
vortex is sufficient to induce chaotic particle motion, under
the sole effect of gravity and of the unsteadiness of the vor-
tex. We have chosen to consider a fixed vortex with time-
dependent intensity. One could argue that this choice is not
realistic, since the intensity �circulation� of vortices is known
to remain constant unless viscosity affects it �Kelvin’s theo-
rem�. This is why we assumed that some appropriate bound-

2 4 6 8 10
s

0.2

0.4

0.6

0.8

1.0

F�s�

ω/V
T

2

k Vγ
T
2

chaotic sedimentation
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FIG. 3. �Color online� Plot of the amplitude of the Melnikov
function, obtained by solving numerically the particle path over the
homoclinic trajectory of the renormalized system.
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FIG. 4. Evolution of a particle cloud initially released inside the
cell when �=4VT
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ary conditions, or an appropriate volumic force, was present
to sustain the whole picture. Our goal being to show that
gravity and unsteady differential rotation are sufficient ingre-
dients to induce chaotic particle settling. Note also that the
detailed shape of the vortex �here a rotation rate decaying
like 1 /r2, where r is the distance to the vortex center� might
not be of major importance, and that other decaying rotation
rates could also lead to chaotic particle motion.

In the present analysis, gravity plays a significant role
since it is responsible for the appearance of a homoclinic
trajectory in the leading-order dynamics. Like for particle
settling in the vicinity of upward streamlines �16�, particle
inertia is opposed to the appearance of chaos because of
centrifugal effects, and tends to maintain the two invariant
manifolds Ws and Wu away from each other. The flow un-
steadiness, in contrast, tends to make these manifolds inter-
sect.

To check the predictive power of the Melnikov analysis
we have computed the average length of particle paths, as
proposed by Ziemniak and Jung �17� in the framework of
fluid points trajectories in the wake of a cylindrical obstacle.
These authors observed that the probability to find a trajec-
tory whose path length increase is larger than some value s is
an exponential function of s. It would be therefore of interest
to check whether such exponential distributions are visible
also in the present case. Clearly, these statistics are linked to
the area of the lobes �i.e., subsets of the phase space located
between Wu and Ws, as shown in gray in Fig. 2�b��, which
can be calculated from the Melnikov function. In addition,
lobe dynamics can be used to calculate other global quanti-
ties such as particle flux accross the separatrices �see, for
example, �18,19��. A detailed analysis of such integral quan-
tities would therefore be of interest to characterize more pre-
cisely inertial particle transport in the chaotic regime. Further
studies on this topic should be of interest.

In the absence of particle inertia ��p=0� the particle dy-
namics is always chaotic �just set k=0 in the Melnikov func-

tion �9��: this is a pure Hamiltonian chaos, in the sense that
the complete system is Hamiltonian here, and very close to
chaotic advection of perfect tracers. The Poincaré sections in
this case are very classical and are shown in Fig. 7 in the
case VT=1. As expected, Kolmogorov-Arnold-Moser �KAM�
curves are visible outside the stochastic layer close to the
homoclinic trajectory, indicating that some particles could be
trapped for a while, and these curves are destroyed as the
unsteadiness of the flow increases.

The present mechanism could be applied to mixing de-
vices in chemical engineering processes, where one could
leave the sedimentation act between every two stiring peri-
ods. To our knowledge, detailed mathematical analyses de-
voted to such devices have not been published so far. In
another context, the stretch, sediment, and fold mechanism
could play a non-negligible role in the mixing of plankton
�or the mixing of any other “particle”� in the upper ocean.
Indeed, under the combined effect of settling and of unsteady
wind-induced �or temperature-gradient-induced� rotating
flows, patches of sedimenting particles could perhaps be
mixed efficiently. This point needs further discussions.

The main conclusion of the present work is that an un-
steady differential rotation is sufficient to induce chaotic
heavy particle settling provided the still-fluid terminal veloc-
ity of the inclusion is close enough to the flow velocity, and
particle inertia is small enough. �In contrast, fluid point tra-
jectories are very regular here, as fluid points go to and fro
along portions of the circle.� The mechanism, which can be
called “stretch, sediment and fold,” is sketched in Fig. 8 �for
the sake of clarity, large amplitude oscillations are assumed
there�: a particle cloud is stretched by a vortex, then the
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vortex weakens and the cloud sediments, then the vortex
starts again and the cloud is folded, and so on. This elemen-
tary mechanism is different from the one investigated by
Vilela and Motter �20� with two blinking vortex sources.
Indeed, in the system investigated by these authors gravity is
not a key ingredient for the appearance of chaos. The particle
spirals out around the vortex sources until it reaches a limit
cycle and remains suspended permanently. On this attractor

the spiraling time of the inclusion is of the order of the pe-
riod of the blinking. In our single-vortex case, it is the sedi-
mentation time scale which has to match the blinking period.
Moreover, these authors show that a cascade of period dou-
blings occurs as the particle inertia decreases, leading to a
strange attractor. In the present paper no attractor can be
observed since our system is reduced to a perturbed Hamil-
tonian system. It could therefore be of interest to check
whether, once this simplification is removed, a permanent
suspension could appear in the vicinity of a single fixed sin-
gularity with time-periodic strength and gravity. Further
analyses should clarify this point.
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(a) (b) (c) (d)

FIG. 8. Sketch of the gravity-induced blinking vortex effect, for
large amplitude oscillations. Sketch �a� shows the initial particle
cloud �black� and the vortex �white circle�. In step �b� the particle
cloud is stretched due to differential rotation. Then the vortex weak-
ens and the cloud sediments �c�. When the differential rotation re-
starts the cloud is folded.
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